3. Map Projection:

i. Concept of map projection
(Definition of map projection)
ii. Classification of map projection (Types of map projection)
iii. Choice of map projection

1. What is map projection? (Concept/ Definition) 4

Ans: Map projection is the method of transferring spherical earth into a flat surface to draw a map. Here the graticule of latitude and longitude is shown on a plain paper. It requires a systematic transformation. In map projection, the three dimensional earth is presented on a two dimensional plane.

It is the representation of objects and information on a curved surface in a plane using mathematical and geometric relations. Transformation always involves distortion either in size, shape or location. Therefore no map projection is correct.
@ @

2. Q: Describe the classification of map projection. 10

Ans: There are three main types of map projections. They are-
a) Cylindrical Projection
b) Conical Projection
c) Azimuthal or planar projection or zenithal projection

a) Cylindrical Projection:

> Uses a cylinder as a tangent surface that wraps around a globe
> The parallels and meridians are straight lines
> They intersect each other at right angles
> Direction and shape is correct
$>$ The area near to tangent is more correct
$>$ Area between 80^{0} north and south is more accurate
> Cylindrical projection is three types:
i. Cylindrical Equal Area Projection
ii. Gall's Stereographic Projection
iii. Mercator's Projection

Cylindrical equal area projection:

- The cylinder touch a globe at normal position
- All the parallels and meridians are straight lines crossing at right angle
- Also known as Lambert's projection

Gall's Projection:

- Gall invented this projection
- The cylinder intersect the globe at the $45^{\text {th }}$ parallel north and south
- Less distortion towards poles

Mercator's Projection:

- Mercator invented this projection in $16^{\text {th }}$ century
- Meridians are straight lines and equally spaced
- Parallels are increases as they get closer to the poles
- Shapes are presented more accurately in tangent point areas

b) Conical Projection:

$>$ Uses a conic surface to touch the globe when light is cast
Meridians are semi- circle like ribs of a fan

Types of conical projection:
i. Lambert's conformal conic projection
ii. Simple conic projection with standard parallel
iii. Albert's equal area conic projection
iv. Polyconic projection

c) Zenithal or Azimuthal map projection:

> Here the flat sheet touch with the globe opposite to the tangent area
> The light being cast from the infinite distance of a certain position
$>$ This type of map projection can be classified into three types:
i. Gnomonic projection
ii. Stereographic projection
iii. Orthographic projection

Gnomonic Projection:

- Light is at the centre of the globe
- Less than half of the globe can be projected
- It displays all large circles as straight lines and parallels as curve
- Not suitable for large area

Stereographic projection:

- Source of light is opposite to the tangent point
- Meridians are straight lines
- Parallels are circles
- Shape is maintained \& used for aviation mapping

Orthographic projection:

- Here only one hemisphere is depicted
- Scale is more correct at the tangent area
- When distance increases from the tangent point, error increases
- Light is straightly past the globe to touch the polar region
\# \#

Prepared by
D. Bora (Sir), Samaguri College
\# \#

