3. Map Projection:

i.	Concept of map projection	(Definition of map projection)
ii.	Classification of map projection	(Types of map projection)
iii.	Choice of map projection	

1. What is map projection? (Concept/ Definition) 4

Ans: Map projection is the method of transferring spherical earth into a flat surface to draw a map. Here the graticule of latitude and longitude is shown on a plain paper. It requires a systematic transformation. In map projection, the three dimensional earth is presented on a two dimensional plane.

It is the representation of objects and information on a curved surface in a plane using mathematical and geometric relations. Transformation always involves distortion either in size, shape or location. Therefore no map projection is correct.

@ @

2. Q: Describe the classification of map projection. 10

Ans: There are three main types of map projections. They are-

- a) Cylindrical Projection
- b) Conical Projection
- c) Azimuthal or planar projection or zenithal projection

a) Cylindrical Projection:

- Uses a cylinder as a tangent surface that wraps around a globe
- > The parallels and meridians are straight lines
- They intersect each other at right angles
- Direction and shape is correct

- > The area near to tangent is more correct
- \blacktriangleright Area between 80 ⁰ north and south is more accurate
- Cylindrical projection is three types:
 - i. Cylindrical Equal Area Projection
 - ii. Gall's Stereographic Projection
 - iii. Mercator's Projection

Cylindrical equal area projection:

- The cylinder touch a globe at normal position
- All the parallels and meridians are straight lines crossing at right angle
- Also known as Lambert's projection

Gall's Projection:

- Gall invented this projection
- The cylinder intersect the globe at the 45th parallel north and south
- Less distortion towards poles

Mercator's Projection:

- Mercator invented this projection in 16^{th} century
- Meridians are straight lines and equally spaced
- Parallels are increases as they get closer to the poles
- Shapes are presented more accurately in tangent point areas

b) Conical Projection:

- ➤ Uses a conic surface to touch the globe when light is cast
- ➢ Meridians are semi- circle like ribs of a fan

Types of conical projection:

- i. Lambert's conformal conic projection
- ii. Simple conic projection with standard parallel
- iii. Albert's equal area conic projection
- iv. Polyconic projection

c) Zenithal or Azimuthal map projection:

- Here the flat sheet touch with the globe opposite to the tangent area
- > The light being cast from the infinite distance of a certain position
- > This type of map projection *can be classified into three types*:
 - i. Gnomonic projection
 - ii. Stereographic projection
 - iii. Orthographic projection

Gnomonic Projection:

- Light is at the centre of the globe
- Less than half of the globe can be projected
- It displays all large circles as straight lines and parallels as curve
- Not suitable for large area

Stereographic projection:

- Source of light is opposite to the tangent point
- Meridians are straight lines
- Parallels are circles
- Shape is maintained & used for aviation mapping

Orthographic projection:

- Here only one hemisphere is depicted
- Scale is more correct at the tangent area
- When distance increases from the tangent point, error increases
- Light is straightly past the globe to touch the polar region

#

Prepared by

D. Bora (Sir), Samaguri College

##